Radon akslantirishi yordamida matematik fizika masalalarini yechish
##semicolon##
Ikki o’zgaruvchili funksiyani ko’rib chiqamiz. butun tegislikda aniqlangan va cheksizlikda yetarlicha tez kamayib boruvchi ikkita haqiyqiy o’zgaruvchili funksiya bo’lsin. funksiyaning Radon akslantirishi deb (1) funksiyaga aytiladi [1##article.abstract##
1917-yil matematik I.Radon Fure akslantirishi bilan bog’liq bo’lgan ko’p o’zgaruvchili funksiyaning integral akslantirishini keltirib chiqardi. Radon akslantirishining asosiy xossalaridan biri teskari akslanish , yaniy Radon akslantirishi orqali orginal funksiyaning qayta o’z holiga kelishi.
##submission.downloads##
##submissions.published##
2024-09-08
##issue.issue##
##section.section##
Статьи
##submission.howToCite##
Radon akslantirishi yordamida matematik fizika masalalarini yechish. (2024). Modern Education and Development, 9(1), 244-248. https://modernedu-dv.com/index.php/dv/article/view/370